84 research outputs found

    Effects of Air Pollutants on Development of Allergic Immune Responses in the Respiratory Tract

    Get PDF
    The increased incidence of allergic asthma in the human population worldwide has stimulated many explanatory theories. A concomitant decrease in air quality leads to epidemiological and laboratory-based studies to demonstrate a link between air pollutants and asthma. Specifically, ozone, environmental tobacco smoke, and diesel exhaust are associated with enhancement of respiratory allergy to inhaled allergens. This review summarizes the state of the knowledge, both human epidemiology and laboratory animal experiments, linking air pollution to allergy. Critical issues involve development of the lung and the fetal immune response, and the potential for substances like ozone and ETS in the air to modulate early immune responses with lifelong consequences

    Second-hand Smoke Increases Nitric Oxide and Alters the IgE Response in a Murine Model of Allergic Aspergillosis

    Get PDF
    This study was performed to determine the effects of environmental tobacco smoke (ETS) on nitric oxide (NO) and immunoglobulin (Ig) production in a murine model of allergic bronchopulmonary aspergillosis (ABPA). Adult BALB/c mice were exposed to aged and diluted sidestream cigarette smoke from day 0 through day 43 to simulate “second-hand smoke”. During exposure, mice were sensitized to soluble Aspergillus fumigatus (Af) antigen intranasally between day 14 and 24. All Af sensitized mice in ambient air (Af + AIR) made elevated levels of IgE, IgG1, IgM, IgG2a and IgA. Af sensitized mice housed in ETS (Af + ETS) made similar levels of immunoglobulins except for IgE that was significantly reduced in the serum and bronchoalveolar lavage (BAL). However, immunohistochemical evaluation of the lung revealed a marked accumulation of IgE positive cells in the lung parenchyma of these Af + ETS mice. LPS stimulation of BAL cells revealed elevated levels of NO in the Af + AIR group, which was further enhanced in the Af+ETS group. In vitro restimulation of the BAL cells on day 45 showed a TH0 response with elevated levels of IL3, 4, 5, 10 and IFN-γ. However, by day 28 the response shifted such that TH2 cytokines increased while IFN-γ decreased. The Af + ETS group showed markedly reduced levels in all cytokines tested, including the inflammatory cytokine IL6, when compared to the Af+AIR group. These results demonstrate that ETS affects ABPA by further enhancing the NO production and reduces the TH2 and the inflammatory cytokines while altering the pattern of IgE responses

    Gender Differences in the Allergic Response of Mice Neonatally Exposed to Environmental Tobacco Smoke

    Get PDF
    Exposure to environmental tobacco smoke (ETS) has been shown to increase allergic sensitization and reactivity and there has been some suggestion that the influence of ETS on the allergic response is dissimilar in males and females. It is to be determined whether gender differences exist in the IgE response to ovalbumin (OVA) sensitization following ETS exposure from the neonatal period through adulthood. To address this thesis, we examined gender differences in OVA sensitization of BALB/c mice housed from birth through adulthood under smoking and nonsmoking conditions. At 6 weeks of age (day 0) all mice were injected i.p. with OVA in aluminum hydroxide adjuvant followed by three 20 min exposures to 1% aerosolized OVA between day 14 and 80. There were significantly (p<0.05) more total and OVA specific IgE and IgG1 in the serum of females compared to males. Moreover, these sex responses, along with eosinophilia, were further enhanced in mice exposed to ETS. There were also significantly more IgE positive cells in the lungs of female, but not male, mice exposed to ETS compared with ambient air (p<0.05). There was also an elevation of Th2 cytokines (IL4, IL5, IL10, and IL13) after re-stimulation of lung homogenates following ETS exposure. These data demonstrate that female animals are significantly more susceptible than males to the influence of ETS on the allergic response

    Tissue Tropism in Host Transcriptional Response to Members of the Bovine Respiratory Disease Complex.

    Get PDF
    Bovine respiratory disease (BRD) is the most common infectious disease of beef and dairy cattle and is characterized by a complex infectious etiology that includes a variety of viral and bacterial pathogens. We examined the global changes in mRNA abundance in healthy lung and lung lesions and in the lymphoid tissues bronchial lymph node, retropharyngeal lymph node, nasopharyngeal lymph node and pharyngeal tonsil collected at the peak of clinical disease from beef cattle experimentally challenged with either bovine respiratory syncytial virus, infectious bovine rhinotracheitis, bovine viral diarrhea virus, Mannheimia haemolytica or Mycoplasma bovis. We identified signatures of tissue-specific transcriptional responses indicative of tropism in the coordination of host's immune tissue responses to infection by viral or bacterial infections. Furthermore, our study shows that this tissue tropism in host transcriptional response to BRD pathogens results in the activation of different networks of response genes. The differential crosstalk among genes expressed in lymphoid tissues was predicted to be orchestrated by specific immune genes that act as 'key players' within expression networks. The results of this study serve as a basis for the development of innovative therapeutic strategies and for the selection of cattle with enhanced resistance to BRD

    Second-Hand Smoke Increases Bronchial Hyperreactivity and Eosinophilia in a Murine Model of Allergic Aspergillosis

    Get PDF
    Involuntary inhalation of tobacco smoke has been shown to aggravate the allergic response. Antibodies to fungal antigens such as Aspergillus fumigatus (Af) cause an allergic lung disease in humans. This study was carried out to determine the effect of environmental tobacco smoke (ETS) on a murine model of allergic bronchopulmonary aspergillosis (ABPA). BALB/c mice were exposed to aged and diluted sidestream cigarette smoke to simulate 'second-hand smoke'. The concentration was consistent with that achieved in enclosed public areas or households where multiple people smoke. During exposure, mice were sensitized to Af antigen intranasally. Mice that were sensitized to Af antigen and exposed to ETS developed significantly greater airway hyperreactivity than did mice similarly sensitized to Af but housed in ambient air. The effective concentration of aerosolized acetylcholine needed to double pulmonary flow resistance was significantly lower in Af + ETS mice compared to the Af + AIR mice. Immunological data that supports this exacerbation of airway hyperresponsiveness being mediated by an enhanced type 1 hypersensitivity response include: eosinophilia in peripheral blood and lung sections. All Af sensitized mice produced elevated levels of IL4, IL5 and IL10 but no IFN-Îł indicating a polarized Th2 response. Thus, ETS can cause exacerbation of asthma in ABPA as demonstrated by functional airway hyperresponsiveness and elevated levels of blood eosinophilia
    • 

    corecore